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What is this talk

We’ll first derive a famous theorem (Stanley 1973) on colourings of graphs
thinking in terms of heaps

, or as Viennot would say, “by the philosophy of heaps”.

Stanley’s theorem involves the chromatic polynomial .

We’ll then discuss the matching polynomial of a graph.
More specifically we’ll discuss three properties of it (all in terms of heaps).
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What happens if we put λ = −1 in γG (λ) ? !

For , we’ve seen that γG (λ) = 6×
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= (−1)4 = 1

We get: 6× (−1) + 24× 1 = 18.

Remarkably there are exactly 18 acyclic orientations of the above graph.

Example of acyclic orientation:
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Theorem
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Basic results on heaps

Inversion Lemma
Paths Lemma

Logarithmic Lemma

The inversion lemma delivers the punch (in the punch line above):
It implies that the signed sum of layerings of a heap is (−1)# of basic pieces in the heap.
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More on the inversion lemma

generating function for heaps :=
∑

heaps H

H

generating function for heaps =
1

1 + S

where
1 + S := signed sum of trivial heaps
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About the matching polynomial of a graph G

All its roots are real.

If G is a tree with adjacency matrix A, then it equals det(I − tA).
(Thus the first item follows from the Spectral Theorem when G is a tree.)

It’s the denominator in the inversion lemma for heaps of dimers on G .
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