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What is this talk

We'll first derive a famous theorem (Stanley 1973) on colourings of graphs
thinking in terms of heaps, or as Viennot would say, “by the philosophy of heaps”.

Stanley's theorem involves the chromatic polynomial.

We'll then discuss the matching polynomial of a graph.
More specifically we'll discuss three properties of it (all in terms of heaps).
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Colourings of a graph

@ At least 3 colours are required to colour the graph.

o Listed above are all the 6 different (exact) 3-colourings of the graph.

@ The graph evidently has 24 different exact 4-colourings.
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Suppose we are given A colours with which to colour the graph.

We need to use at least 3 colours and can use at most 4 colours.

()]

The number of A-colourings (colourings with at most A colours) equals:

AA-1)(A=2)+ XA -1)(A-2)(A-3)|  Chromatic polynomial
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What happens if we put A = —1 in yg(A) ? !

&

3
(;\):A-()\'—l)-(')\—2) (/\):/\-()\—1)-()\—2)-()\—3)

1 -2 -3 . 4

A A
For & , we've seen that yg(A\) =|6 x ( ) +24 x <4>

We get: 6x(—-1)+24x1=18.
Remarkably there are exactly 18 acyclic orientations of the above graph.
Example of acyclic orientation:
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Stanley’s theorem (1973)

v6(-1) = Z’yg(k)(—l)k = (—1)# ofvertices 4 of acyclic orientations of G
k>1

Proof in terms of heaps follows.
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Colourings are layerings

A X
B
XY
A
Y B

A layering is a partitioning of the vertices into layers
of non-empty independent subsets stacked vertically.

Exact k-colourings are layerings with k-layers.
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Two colourings may yield the same acyclic orientation
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colourings — layerings

1 \

acyclic orientations <— (Multilinear) HEAPS
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So what are heaps?

(Multilinear) Heaps are layerings in which things fall until obstructed.

A X A X
Y B Y Y B
B 5 B
XY — XY

X
A A A

(Multilinear) Heaps are in bijection with acyclic orientations.
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k>1
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k>1

v6(=1) = D76k (1)

k>1

W)=Y 3 (-

k>1 k-layerings

’VG(_]-): Z (_1)#oflayers

layerings

'YG(_I) _ Z ( Z (_1)# of Iayers)

multilinear heaps H layerings of H
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Punch line of the proof

Theorem

Signed sum of layerings of a (multilinear) heap equals (—1)

# of vertices

A X

Y B
B B 5
The heap XY has three layerings: XY %
A A P

> <X
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Basic results on heaps

Inversion Lemma
Paths Lemma
Logarithmic Lemma

The inversion lemma delivers the punch (in the punch line above):
It implies that the signed sum of layerings of a heap is (—1)# of basic pieces in the heap
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More on the inversion lemma

generating function for heaps = Z H
heaps H

ating function for heaps = ——
generating functi r p TS

where
1+ S := signed sum of trivial heaps
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